17 research outputs found

    Design and Development of Two-Dimensional Strained Layer Superlattice (SLS) Detector Arrays for IR Applications

    Get PDF
    The implementation of strained layer superlattices (SLS) for detection of infrared (IR) radiation has enabled compact, high performance IR detectors and two-dimensional focal plane arrays (FPAs). Since initially proposed three decades ago, SLS detectors exploiting type II band structures existing in the InAs/GaSb material system have become integral components in high resolution thermal detection and imaging systems. The extensive technological progress occurring in this area is attributed in part to the band structure flexibility offered by the nearly lattice-matched InAs/AlSb/Ga(In)Sb material system, enabling the operating IR wavelength range to be tailored through adjustment of the constituent strained layer compositions and/or thicknesses. This has led to the development of many advanced type II SLS device concepts and architectures for low-noise detectors and FPAs operating from the short-wavelength infrared (SWIR) to very long-wavelength infrared (VLWIR) bands. These include double heterostructures and unipolar-barrier structures such as graded-gap M-, W-, and N-structures, nBn, pMp, and pBn detectors, and complementary barrier infrared detector (CBIRD) and pBiBn designs. These diverse type II SLS detector architectures have provided researchers with expanded capabilities to optimize detector and FPA performance to further benefit a broad range of electro-optical/IR applications

    Review of Graphene Technology and Its Applications for Electronic Devices

    Get PDF
    Graphene has amazing abilities due to its unique band structure characteristics defining its enhanced electrical capabilities for a material with the highest characteristic mobility known to exist at room temperature. The high mobility of graphene occurs due to electron delocalization and weak electron–phonon interaction, making graphene an ideal material for electrical applications requiring high mobility and fast response times. In this review, we cover graphene’s integration into infrared (IR) devices, electro-optic (EO) devices, and field effect transistors (FETs) for radio frequency (RF) applications. The benefits of utilizing graphene for each case are discussed, along with examples showing the current state-of-the-art solutions for these applications

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    P-Type Doping Utilizing Nitrogen and Mn Doping of ZnO Using MOCVD for Ultraviolet Lasers and Spintronic Applications

    No full text
    ZnO has distinct advantages over competing technologies such as GaN. Two advantages are the inherent improvement in ultraviolet (UV) brightness, necessary for the biological sensor application where the signal-to-noise ratio (SNR) is enhanced by a bright UV source, and the second is the availability of ZnO lattice-matched substrates, which will result in lower defect densities than GaN, higher manufacturing yield, and then lower cost. The ZnO material system’s advantage in exciton binding energy of 60 MeV, a three-time improvement over GaN, will result in UV emitters with superior performance

    P-Type Doping Utilizing Nitrogen and Mn Doping of ZnO Using MOCVD for Ultraviolet Lasers and Spintronic Applications

    No full text
    ZnO has distinct advantages over competing technologies such as GaN. Two advantages are the inherent improvement in ultraviolet (UV) brightness, necessary for the biological sensor application where the signal-to-noise ratio (SNR) is enhanced by a bright UV source, and the second is the availability of ZnO lattice-matched substrates, which will result in lower defect densities than GaN, higher manufacturing yield, and then lower cost. The ZnO material system’s advantage in exciton binding energy of 60 MeV, a three-time improvement over GaN, will result in UV emitters with superior performance

    Development of SiGe arrays for visible-near IR imaging applications

    No full text
    SiGe based focal plane arrays offer a low cost alternative for developing visible- near-infrared focal plane arrays that will cover the spectral band from 0.4 to 1.6 microns. The attractive features of SiGe based foal plane arrays take advantage of silicon based technology that promises small feature size, low dark current and compatibility with the low power silicon CMOS circuits for signal processing. This paper will discuss performance characteristics for the SiGe based VIS-NIR Sensors for a variety of defense and commercial applications using small unit cell size and compare performance with InGaAs, InSb, and HgCdTe IRFPA's. We will present results on the approach and device design for reducing the dark current in SiGe detector arrays. We will discuss electrical and optical properties of SiGe arrays at room temperature and as a function of temperature. We will also discuss future integration path for SiGe devices with other Silicon-based technology for defense and Commercial Applications
    corecore